martes, 26 de abril de 2011

CICLO DIESEL

El ciclo del motor diésel lento (en contraposición al ciclo rápido, más aproximado a la realidad) ideal de cuatro tiempos es una idealización del diagrama del indicador de un motor Diesel, en el que se omiten las fases de renovación de la carga., y se asume que el fluido termodinámico que evoluciona es un gas perfecto, en general aire. Además, se acepta que todos los procesos son ideales y reversibles, y que se realizan sobre el mismo fluido. Aunque todo ello lleva a un modelo muy aproximado del comportamiento real del motor, permite al menos extraer una serie de conclusiones cualitativas con respecto a este tipo de motores. No hay que olvidar que los grandes motores marinos y de tracción ferroviaria son del ciclo de 2 tiempos.

Consta de las siguientes fases:
  1. Compresión, proceso 1-2: es un proceso de compresión adiabática reversible (isentrópica), es decir sin intercambio de calor con el exterior. Viene a simbolizar el proceso de compresión de la masa fresca en el motor real, en el que en el pistón, estando en el punto muerto inferior (PMI), empieza su carrera de ascenso, comprimiendo el aire contenido en el cilindro. Ello eleva el estado termodinámico del fluido, aumentando su presión, su temperatura y disminuyendo su volumen específico, en virtud del efecto adiabático. En la idealización, el proceso viene gobernado por la ecuación de la isoentrópica P \cdot v^k = cte , con k índice de politropicidad isoentrópico = Cp/Cv.
  2. Combustión, proceso 2-3: en esta idealización, el aporte de calor Qp se simplifica por un proceso isóbaro (a presión constante). Sin embargo, la combustión Diesel es mucho más compleja: en el entorno del punto muerto superior (PMS) (en general un poco antes de alcanzarlo debido a problemas relacionados con la inercia térmica de los fluidos, es decir el retraso que hay entre la inyección y la inflamación espontánea), se inicia la inyección del combustible (en motores de automóviles, gasóleo, aunque basta con que el combustible sea lo suficientemente autoinflamable y poco volátil). El inyector pulveriza y perliza "atomiza" el combustible, que, en contacto con la atmósfera interior del cilindro, comienza a evaporarse. Como quiera que el combustible de un motor Diesel tiene que ser muy autoinflamable (gran poder detonante, indice de Cetano alto), ocurre que, mucho antes de que haya terminado la inyección de todo el combustible, las primeras gotas de combustible inyectado se autoinflaman y dan comienzo a una primera combustión caracterizada por ser muy turbulenta e imperfecta, al no haber tenido la mezcla de aire y combustible tiempo suficiente como para homogeneizarse. Esta etapa es muy rápida, y en el presente ciclo se obvia, pero no así en el llamado ciclo Diesel rápido, en el que se simboliza como una compresión isócora al final de la compresión. Posteriormente, se da, sobre la masa fresca que no ha sido quemada, una segunda combustión, llamada combustión por difusión, mucho más pausada y perfecta, que es la que aquí se simplifica por un proceso isóbaro. En esta combustión por difusión se suele quemar en torno al 80% de la masa fresca, de ahí que la etapa anterior se suela obviar. Sin embargo, también es cierto que la inmensa mayoría del trabajo de presión y de las pérdidas e irreversibilidades del ciclo se dan en la combustión inicial, por lo que omitirla sin más sólo conducirá a un modelo imperfecto del ciclo Diesel. Consecuencia de la combustión es el elevamiento súbito del estado termodinámico del fluido, en realidad debido a la energía química liberada en la combustión, y que en este modelo ha de interpretarse como un calor que el fluido termodinámico recibe, y a consecuencia del cual se expande en un proceso isóbaro reversible.
  3. Expansión, proceso 3-4: se simplifica por una expansión isentrópica (adiabática) del fluido termodinámico, hasta el volumen específico que se tenía al inicio de la compresión. En la realidad, la expansión se produce a consecuencia del elevado estado termodinámico de los gases tras la combustión, que empujan al pistón desde el PMS hacia el PMI, produciendo un trabajo. Nótese como, como en todo ciclo de motor de cuatro tiempos o dos tiempos, sólo en esta carrera, en la de expansión, se produce un trabajo.
  4. Última etapa, proceso 4-1: esta etapa es un proceso isocórico (escape) es decir a volumen constante. Desde la presión final de expansión hasta la presión inicial de compresión. En rigor, carece de cualquier significado físico, y simplemente se emplea ad hoc, para poder cerrar el ciclo ideal. Sin embargo, hay autores que no satisfechos con todas las idealizaciones realizadas, insisten en dar un siginificado físico a esta etapa, y la asocian a la renovación de la carga. , pues, razonan, es esto lo que se produce en las dos carreras que preceden a la compresión y siguen a la expansión: el escape de masa quemada y la admisión de masa fresca. No obstante, el escape es un proceso que requiere mucho más trabajo que el que implica este proceso (ninguno), y además ninguno de los dos procesos se da, ni por asomo, a volumen específico constante.
Es importante notar cómo, en el ciclo Diesel, no se deben confundir nunca los cuatro tiempos del motor con el ciclo termodinámico que lo idealiza, que sólo se refiere a dos de los tiempos: la carrera de compresión y la de expansión; el proceso de renovación de la carga.. cae fuera de los procesos del ciclo Diesel, y ni tan siquiera es un proceso termodinámico en el sentido estricto.

sábado, 23 de abril de 2011

Clasificación de motores

CLASIFICACIÓN DE LOS MOTORES DE ACUERDO A LAS DISPOSICIONES DE LOS CILINDROS: 

Los motores se pueden clasificar de acuerdo a la disposición de los cilindros. Los cilindros de un motor pueden estar dispuestos de diferentes formas, pero de acuerdo con la relación con su número y las dimensiones del automóvil que va a expulsar. 

MOTORES EN LINEA: 
Los motores en línea son la configuración más corriente utilizada en los automóviles, ya sea ubicado de forma longitudinal o transversal y disponiendo del número de cilindros, cilindrada del motor y espacio disponible. Los cilindros van uno a continuación del otro verticalmente en un solo bloque, el montaje general de éstos motores es de 2, 3,4, 5 y 6 cilindros. Los motores en línea son un diseño usual para aplicaciones tanto estacionarias como de transporte, por que ofrece la solución más simple en la construcción y mantenimiento 




MOTORES EN V: 



Los motores en V consisten en dos bancadas o bloques de cilindros en línea, formando un ángulo de 60°, 90° o 120°, se utiliza un solo cigüeñal para ambos bloques. Este sistema ha sido usado para disminuir la longitud que ocupa el motor.
En éstos motores los cilindros se disponen en dos bloques, uno al lado del otro, formando un ángulo de 60°, 90° o 120°, y usando un solo cigüeñal común a ambos bloques. Este sistema ha sido el seguido siempre para los motores de 12 y 16 cilindros, en los que la colocación en línea daría como resultado un motor exageradamente largo, con graves inconvenientes de constitución y colocación, pues ocuparían mucho espacio a lo largo del coche, y los largos cigüeñales habrían de ser enormemente robustos para resistir bien las vibraciones torsionales.



Historia del motor Diesel

Fue inventado y patentado por Rudolf Diesel en 1892, del cual deriva su nombre. Fue diseñado inicialmente y presentado en la feria internacional de 1900 en París como el primer motor para "biocombustible", como aceite puro de palma o de coco. Diesel también reivindicó en su patente el uso de polvo de carbón como combustible, aunque no se utiliza por lo abrasivo que es. El motor diésel existe tanto en el ciclo de 4 tiempos (4T - aplicaciones de vehículos terrestres por carretera como automóviles, camiones y autobuses) como de 2 tiempos (2T - grandes motores de tracción ferroviaria, de propulsión naval, y algunos camiones y autobuses en EE.UU.).
El motor Diesel es un motor térmico de combustión interna alternativo en el cual el encendido del combustible se logra por la temperatura elevada que produce la compresión del aire en el interior del cilindro, según el principio del ciclo del diésel